Article

Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress

Background Real-time quantitative PCR (RT-qPCR) is the most commonly used method for accurately detecting gene expression patterns. As part of RT-qPCR analysis, normalization of the data requires internal control gene(s) that display uniform expression under different biological conditions. However, no invariable internal control gene exists, and therefore more than one reference gene is needed to normalize RT-qPCR results. Identification of stable reference genes in potato will improve assay accuracy for selecting stress-tolerance genes and identifying molecular mechanisms conferring stress tolerance in this species. Results In the experiment, we assessed the expression of eight candidate internal control genes, namely elongation factor-1alpha (EF1α), actin, tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), adenine phosphoribosyl transferase (APRT), 60S ribosomal protein L8 (L8), Cullin 3A (CUL3A), and exocyst complex component sec3 (sec3), in a diverse set of potato samples representing drought stress and osmotic stress challenges, and using geNorm, NormFinder, BestKeeper and RefFinder softwares. Conclusions The results indicated that EF1α and sec3 were the most stably expressed genes in the potato under drought and osmotic stress conditions. This work will facilitate future work on gene expression studies in potato and also benefit other species of the Solanaceae, such as tomato.

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.